API
BasicBSpline.jl
BasicBSpline.AbstractKnotVector
— TypeAn abstract type for knot vector.
BasicBSpline.BSplineDerivativeSpace
— TypeBSplineDerivativeSpace{r}(P::BSplineSpace)
Construct derivative of B-spline space from given differential order and B-spline space.
\[D^{r}(\mathcal{P}[p,k]) =\left\{t \mapsto \left. \frac{d^r f}{dt^r}(t) \ \right| \ f \in \mathcal{P}[p,k] \right\}\]
Examples
julia> P = BSplineSpace{2}(KnotVector([1,2,3,4,5,6]))
BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6]))
julia> dP = BSplineDerivativeSpace{1}(P)
BSplineDerivativeSpace{1, BSplineSpace{2, Int64, KnotVector{Int64}}, Int64}(BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6])))
julia> degree(P), degree(dP)
(2, 1)
BasicBSpline.BSplineManifold
— TypeConstruct B-spline manifold from given control points and B-spline spaces.
Examples
julia> using StaticArrays
julia> P = BSplineSpace{2}(KnotVector([0,0,0,1,1,1]))
BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([0, 0, 0, 1, 1, 1]))
julia> a = [SVector(1,0), SVector(1,1), SVector(0,1)]
3-element Vector{SVector{2, Int64}}:
[1, 0]
[1, 1]
[0, 1]
julia> M = BSplineManifold(a, P);
julia> M(0.4)
2-element SVector{2, Float64} with indices SOneTo(2):
0.84
0.64
julia> M(1.2)
ERROR: DomainError with 1.2:
The input 1.2 is out of domain 0 .. 1.
[...]
BasicBSpline.BSplineSpace
— TypeConstruct B-spline space from given polynominal degree and knot vector.
\[\mathcal{P}[p,k]\]
Examples
julia> p = 2
2
julia> k = KnotVector([1,3,5,6,8,9])
KnotVector([1, 3, 5, 6, 8, 9])
julia> BSplineSpace{p}(k)
BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([1, 3, 5, 6, 8, 9]))
BasicBSpline.BSplineSpace
— MethodConvert BSplineSpace to BSplineSpace
BasicBSpline.EmptyKnotVector
— TypeKnot vector with zero-element.
\[k=()\]
This struct is intended for internal use.
Examples
julia> EmptyKnotVector()
EmptyKnotVector{Bool}()
julia> EmptyKnotVector{Float64}()
EmptyKnotVector{Float64}()
BasicBSpline.KnotVector
— TypeConstruct knot vector from given array.
\[k=(k_1,\dots,k_l)\]
Examples
julia> k = KnotVector([1,2,3])
KnotVector([1, 2, 3])
julia> k = KnotVector(1:3)
KnotVector([1, 2, 3])
BasicBSpline.RationalBSplineManifold
— TypeConstruct Rational B-spline manifold from given control points, weights and B-spline spaces.
Examples
julia> using StaticArrays, LinearAlgebra
julia> P = BSplineSpace{2}(KnotVector([0,0,0,1,1,1]))
BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([0, 0, 0, 1, 1, 1]))
julia> w = [1, 1/√2, 1]
3-element Vector{Float64}:
1.0
0.7071067811865475
1.0
julia> a = [SVector(1,0), SVector(1,1), SVector(0,1)]
3-element Vector{SVector{2, Int64}}:
[1, 0]
[1, 1]
[0, 1]
julia> M = RationalBSplineManifold(a,w,P); # 1/4 arc
julia> M(0.3)
2-element SVector{2, Float64} with indices SOneTo(2):
0.8973756499953727
0.4412674277525845
julia> norm(M(0.3))
1.0
BasicBSpline.SubKnotVector
— TypeA type to represetnt sub knot vector.
\[k=(k_1,\dots,k_l)\]
Examples
julia> k = knotvector"1 11 211"
KnotVector([1, 3, 4, 6, 6, 7, 8])
julia> view(k, 2:5)
SubKnotVector([3, 4, 6, 6])
BasicBSpline.UniformKnotVector
— TypeConstruct uniform knot vector from given range.
\[k=(k_1,\dots,k_l)\]
Examples
julia> k = UniformKnotVector(1:8)
UniformKnotVector(1:8)
julia> UniformKnotVector(8:-1:3)
UniformKnotVector(3:1:8)
Base.:*
— MethodProduct of integer and knot vector
\[\begin{aligned} m\cdot k&=\underbrace{k+\cdots+k}_{m} \end{aligned}\]
For example, $2\cdot (1,2,2,5)=(1,1,2,2,2,2,5,5)$.
Examples
julia> k = KnotVector([1,2,2,5]);
julia> 2 * k
KnotVector([1, 1, 2, 2, 2, 2, 5, 5])
Base.:+
— MethodSum of knot vectors
\[\begin{aligned} k^{(1)}+k^{(2)} &=(k^{(1)}_1, \dots, k^{(1)}_{l^{(1)}}) + (k^{(2)}_1, \dots, k^{(2)}_{l^{(2)}}) \\ &=(\text{sort of union of} \ k^{(1)} \ \text{and} \ k^{(2)} \text{)} \end{aligned}\]
For example, $(1,2,3,5)+(4,5,8)=(1,2,3,4,5,5,8)$.
Examples
julia> k1 = KnotVector([1,2,3,5]);
julia> k2 = KnotVector([4,5,8]);
julia> k1 + k2
KnotVector([1, 2, 3, 4, 5, 5, 8])
Base.issubset
— MethodCheck a inclusive relationship $k\subseteq k'$, for example:
\[\begin{aligned} (1,2) &\subseteq (1,2,3) \\ (1,2,2) &\not\subseteq (1,2,3) \\ (1,2,3) &\subseteq (1,2,3) \\ \end{aligned}\]
Examples
julia> KnotVector([1,2]) ⊆ KnotVector([1,2,3])
true
julia> KnotVector([1,2,2]) ⊆ KnotVector([1,2,3])
false
julia> KnotVector([1,2,3]) ⊆ KnotVector([1,2,3])
true
Base.issubset
— MethodCheck inclusive relationship between B-spline spaces.
\[\mathcal{P}[p,k] \subseteq\mathcal{P}[p',k']\]
Examples
julia> P1 = BSplineSpace{1}(KnotVector([1,3,5,8]));
julia> P2 = BSplineSpace{1}(KnotVector([1,3,5,6,8,9]));
julia> P3 = BSplineSpace{2}(KnotVector([1,1,3,3,5,5,8,8]));
julia> P1 ⊆ P2
true
julia> P1 ⊆ P3
true
julia> P2 ⊆ P3
false
julia> P2 ⊈ P3
true
Base.length
— MethodLength of knot vector
\[\begin{aligned} \#{k} &=(\text{number of knot elements of} \ k) \\ \end{aligned}\]
For example, $\#{(1,2,2,3)}=4$.
Examples
julia> k = KnotVector([1,2,2,3]);
julia> length(k)
4
Base.unique
— MethodUnique elements of knot vector.
\[\begin{aligned} \widehat{k} &=(\text{unique knot elements of} \ k) \\ \end{aligned}\]
For example, $\widehat{(1,2,2,3)}=(1,2,3)$.
Examples
julia> k = KnotVector([1,2,2,3]);
julia> unique(k)
KnotVector([1, 2, 3])
BasicBSpline.__changebasis_I
— Function__changebasis_I(P::AbstractFunctionSpace, P′::AbstractFunctionSpace)
Internal function for changebasis_I
.
Implicit assumption:
P ⊑ P′
isnondegenerate_I(P′, 1)
isnondegenerate_I(P′, dim(P′))
BasicBSpline._changebasis_I
— Function_changebasis_I(P::AbstractFunctionSpace, P′::AbstractFunctionSpace)
Internal function for changebasis_I
.
Implicit assumption:
P ⊑ P′
BasicBSpline._changebasis_R
— Function_changebasis_R(P::AbstractFunctionSpace, P′::AbstractFunctionSpace)
Internal function for changebasis_R
.
Implicit assumption:
P ⊆ P′
BasicBSpline._changebasis_sim
— MethodReturn a coefficient matrix $A$ which satisfy
\[B_{(i,p_1,k_1)} = \sum_{j}A_{i,j}B_{(j,p_2,k_2)}\]
Assumption:
- $P_1 ≃ P_2$
BasicBSpline._lower_R
— FunctionInternal methods for obtaining a B-spline space with one degree lower.
\[\begin{aligned} \mathcal{P}[p,k] &\mapsto \mathcal{P}[p-1,k] \\ D^r\mathcal{P}[p,k] &\mapsto D^{r-1}\mathcal{P}[p-1,k] \end{aligned}\]
BasicBSpline._vec
— FunctionConvert AbstractKnotVector
to AbstractVector
BasicBSpline.bsplinebasis
— Method$i$-th B-spline basis function. Modified version.
\[\begin{aligned} {B}_{(i,p,k)}(t) &= \frac{t-k_{i}}{k_{i+p}-k_{i}}{B}_{(i,p-1,k)}(t) +\frac{k_{i+p+1}-t}{k_{i+p+1}-k_{i+1}}{B}_{(i+1,p-1,k)}(t) \\ {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{i} \le t < k_{i+1}) \\ &1\quad (k_{i} < t = k_{i+1}=k_{l}) \\ &0\quad (\text{otherwise}) \end{cases} \end{aligned}\]
Examples
julia> P = BSplineSpace{0}(KnotVector(1:6))
BSplineSpace{0, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6]))
julia> bsplinebasis.(P,1:5,(1:6)')
5×6 Matrix{Float64}:
1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 1.0
BasicBSpline.bsplinebasisall
— FunctionB-spline basis functions at point t
on i
-th interval.
Examples
julia> k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])
KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])
julia> p = 2
2
julia> P = BSplineSpace{p}(k)
BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]))
julia> t = 5.7
5.7
julia> i = intervalindex(P,t)
2
julia> bsplinebasisall(P,i,t)
3-element SVector{3, Float64} with indices SOneTo(3):
0.3847272727272727
0.6107012987012989
0.00457142857142858
julia> bsplinebasis.(P,i:i+p,t)
3-element Vector{Float64}:
0.38472727272727264
0.6107012987012989
0.00457142857142858
BasicBSpline.bsplinebasis′
— Functionbsplinebasis′(::AbstractFunctionSpace, ::Integer, ::Real) -> Real
1st derivative of B-spline basis function. Modified version.
\[\dot{B}_{(i,p,k)}(t) =p\left(\frac{1}{k_{i+p}-k_{i}}B_{(i,p-1,k)}(t)-\frac{1}{k_{i+p+1}-k_{i+1}}B_{(i+1,p-1,k)}(t)\right)\]
bsplinebasis′(P, i, t)
is equivalent to bsplinebasis(derivative(P), i, t)
.
BasicBSpline.bsplinebasis′₊₀
— Functionbsplinebasis′₊₀(::AbstractFunctionSpace, ::Integer, ::Real) -> Real
1st derivative of B-spline basis function. Right-sided limit version.
\[\dot{B}_{(i,p,k)}(t) =p\left(\frac{1}{k_{i+p}-k_{i}}B_{(i,p-1,k)}(t)-\frac{1}{k_{i+p+1}-k_{i+1}}B_{(i+1,p-1,k)}(t)\right)\]
bsplinebasis′₊₀(P, i, t)
is equivalent to bsplinebasis₊₀(derivative(P), i, t)
.
BasicBSpline.bsplinebasis′₋₀
— Functionbsplinebasis′₋₀(::AbstractFunctionSpace, ::Integer, ::Real) -> Real
1st derivative of B-spline basis function. Left-sided limit version.
\[\dot{B}_{(i,p,k)}(t) =p\left(\frac{1}{k_{i+p}-k_{i}}B_{(i,p-1,k)}(t)-\frac{1}{k_{i+p+1}-k_{i+1}}B_{(i+1,p-1,k)}(t)\right)\]
bsplinebasis′₋₀(P, i, t)
is equivalent to bsplinebasis₋₀(derivative(P), i, t)
.
BasicBSpline.bsplinebasis₊₀
— Method$i$-th B-spline basis function. Right-sided limit version.
\[\begin{aligned} {B}_{(i,p,k)}(t) &= \frac{t-k_{i}}{k_{i+p}-k_{i}}{B}_{(i,p-1,k)}(t) +\frac{k_{i+p+1}-t}{k_{i+p+1}-k_{i+1}}{B}_{(i+1,p-1,k)}(t) \\ {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{i}\le t< k_{i+1})\\ &0\quad (\text{otherwise}) \end{cases} \end{aligned}\]
Examples
julia> P = BSplineSpace{0}(KnotVector(1:6))
BSplineSpace{0, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6]))
julia> bsplinebasis₊₀.(P,1:5,(1:6)')
5×6 Matrix{Float64}:
1.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
BasicBSpline.bsplinebasis₋₀
— Method$i$-th B-spline basis function. Left-sided limit version.
\[\begin{aligned} {B}_{(i,p,k)}(t) &= \frac{t-k_{i}}{k_{i+p}-k_{i}}{B}_{(i,p-1,k)}(t) +\frac{k_{i+p+1}-t}{k_{i+p+1}-k_{i+1}}{B}_{(i+1,p-1,k)}(t) \\ {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{i}< t\le k_{i+1})\\ &0\quad (\text{otherwise}) \end{cases} \end{aligned}\]
Examples
julia> P = BSplineSpace{0}(KnotVector(1:6))
BSplineSpace{0, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6]))
julia> bsplinebasis₋₀.(P,1:5,(1:6)')
5×6 Matrix{Float64}:
0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0
BasicBSpline.bsplinebasis₋₀I
— Method$i$-th B-spline basis function. Modified version (2).
\[\begin{aligned} {B}_{(i,p,k)}(t) &= \frac{t-k_{i}}{k_{i+p}-k_{i}}{B}_{(i,p-1,k)}(t) +\frac{k_{i+p+1}-t}{k_{i+p+1}-k_{i+1}}{B}_{(i+1,p-1,k)}(t) \\ {B}_{(i,0,k)}(t) &= \begin{cases} &1\quad (k_{1+p} \le k_{i} < t \le k_{i+1}) \\ &1\quad (t = k_{1+p} = k_{i} < k_{i+1}) \\ &1\quad (k_{i} \le t < k_{i+1} \le k_{1+p}) \\ &0\quad (\text{otherwise}) \end{cases} \end{aligned}\]
Examples
julia> P = BSplineSpace{0}(KnotVector(1:6))
BSplineSpace{0, Int64, KnotVector{Int64}}(KnotVector([1, 2, 3, 4, 5, 6]))
julia> BasicBSpline.bsplinebasis₋₀I.(P,1:5,(1:6)')
5×6 Matrix{Float64}:
1.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0
BasicBSpline.bsplinesupport
— MethodReturn the support of $i$-th B-spline basis function.
\[\operatorname{supp}(B_{(i,p,k)})=[k_{i},k_{i+p+1}]\]
Examples
julia> k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])
KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])
julia> P = BSplineSpace{2}(k)
BSplineSpace{2, Float64, KnotVector{Float64}}(KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]))
julia> bsplinesupport(P,1)
0.0 .. 5.5
julia> bsplinesupport(P,2)
1.5 .. 8.0
BasicBSpline.changebasis
— Methodchangebasis(P::AbstractFunctionSpace, P′::AbstractFunctionSpace)
Return changebasis_R(P, P′)
if $P ⊆ P′$, otherwise changebasis_R(P, P′)
if $P ⊑ P′$. Throw an error if $P ⊈ P′$ and $P ⋢ P′$.
BasicBSpline.changebasis_I
— Methodchangebasis_I(P::AbstractFunctionSpace, P′::AbstractFunctionSpace)
Return a coefficient matrix $A$ which satisfy
\[B_{(i,p,k)} = \sum_{j}A_{i,j}B_{(j,p',k')}\]
Examples
julia> P = BSplineSpace{2}(knotvector"3 13")
BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([1, 1, 1, 3, 4, 4, 4]))
julia> P′ = BSplineSpace{3}(knotvector"4124")
BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector([1, 1, 1, 1, 2, 3, 3, 4, 4, 4, 4]))
julia> P ⊑ P′
true
julia> changebasis_I(P, P′)
4×7 SparseArrays.SparseMatrixCSC{Float64, Int32} with 13 stored entries:
1.0 0.666667 0.166667 ⋅ ⋅ ⋅ ⋅
⋅ 0.333333 0.722222 0.555556 0.111111 ⋅ ⋅
⋅ ⋅ 0.111111 0.444444 0.888889 0.666667 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 0.333333 1.0
BasicBSpline.changebasis_R
— Methodchangebasis_R(P::AbstractFunctionSpace, P′::AbstractFunctionSpace)
Return a coefficient matrix $A$ which satisfy
\[B_{(i,p,k)} = \sum_{j}A_{i,j}B_{(j,p',k')}\]
Examples
julia> P = BSplineSpace{2}(knotvector"3 13")
BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([1, 1, 1, 3, 4, 4, 4]))
julia> P′ = BSplineSpace{3}(knotvector"4124")
BSplineSpace{3, Int64, KnotVector{Int64}}(KnotVector([1, 1, 1, 1, 2, 3, 3, 4, 4, 4, 4]))
julia> P ⊆ P′
true
julia> changebasis_R(P, P′)
4×7 SparseArrays.SparseMatrixCSC{Float64, Int32} with 13 stored entries:
1.0 0.666667 0.166667 ⋅ ⋅ ⋅ ⋅
⋅ 0.333333 0.722222 0.555556 0.111111 ⋅ ⋅
⋅ ⋅ 0.111111 0.444444 0.888889 0.666667 ⋅
⋅ ⋅ ⋅ ⋅ ⋅ 0.333333 1.0
BasicBSpline.countknots
— MethodFor given knot vector $k$, the following function $\mathfrak{n}_k:\mathbb{R}\to\mathbb{Z}$ represents the number of knots that duplicate the knot vector $k$.
\[\mathfrak{n}_k(t) = \#\{i \mid k_i=t \}\]
For example, if $k=(1,2,2,3)$, then $\mathfrak{n}_k(0.3)=0$, $\mathfrak{n}_k(1)=1$, $\mathfrak{n}_k(2)=2$.
julia> k = KnotVector([1,2,2,3]);
julia> countknots(k,0.3)
0
julia> countknots(k,1.0)
1
julia> countknots(k,2.0)
2
BasicBSpline.derivative
— Methodderivative(::BSplineDerivativeSpace{r}) -> BSplineDerivativeSpace{r+1}
derivative(::BSplineSpace) -> BSplineDerivativeSpace{1}
Derivative of B-spline related space.
Examples
julia> BSplineSpace{2}(KnotVector(0:5))
BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([0, 1, 2, 3, 4, 5]))
julia> BasicBSpline.derivative(ans)
BSplineDerivativeSpace{1, BSplineSpace{2, Int64, KnotVector{Int64}}, Int64}(BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([0, 1, 2, 3, 4, 5])))
julia> BasicBSpline.derivative(ans)
BSplineDerivativeSpace{2, BSplineSpace{2, Int64, KnotVector{Int64}}, Int64}(BSplineSpace{2, Int64, KnotVector{Int64}}(KnotVector([0, 1, 2, 3, 4, 5])))
BasicBSpline.dim
— MethodReturn dimention of a B-spline space.
\[\dim(\mathcal{P}[p,k]) =\# k - p -1\]
Examples
julia> dim(BSplineSpace{1}(KnotVector([1,2,3,4,5,6,7])))
5
julia> dim(BSplineSpace{1}(KnotVector([1,2,4,4,4,6,7])))
5
julia> dim(BSplineSpace{1}(KnotVector([1,2,3,5,5,5,7])))
5
BasicBSpline.exactdim_I
— MethodExact dimension of a B-spline space.
Examples
julia> exactdim_I(BSplineSpace{1}(KnotVector([1,2,3,4,5,6,7])))
5
julia> exactdim_I(BSplineSpace{1}(KnotVector([1,2,4,4,4,6,7])))
4
julia> exactdim_I(BSplineSpace{1}(KnotVector([1,2,3,5,5,5,7])))
3
BasicBSpline.exactdim_R
— MethodExact dimension of a B-spline space.
Examples
julia> exactdim_R(BSplineSpace{1}(KnotVector([1,2,3,4,5,6,7])))
5
julia> exactdim_R(BSplineSpace{1}(KnotVector([1,2,4,4,4,6,7])))
4
julia> exactdim_R(BSplineSpace{1}(KnotVector([1,2,3,5,5,5,7])))
4
BasicBSpline.expandspace
— MethodExpand B-spline space with given additional degree and knotvector. The behavior of expandspace
is same as expandspace_I
.
BasicBSpline.expandspace_I
— FunctionExpand B-spline space with given additional degree and knotvector. This function is compatible with issqsubset
(⊑
)
Examples
julia> k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]);
julia> P = BSplineSpace{2}(k);
julia> P′ = expandspace_I(P, Val(1), KnotVector([6.0]))
BSplineSpace{3, Float64, KnotVector{Float64}}(KnotVector([0.0, 1.5, 2.5, 2.5, 5.5, 5.5, 6.0, 8.0, 8.0, 9.0, 9.0, 9.5, 10.0]))
julia> P ⊆ P′
false
julia> P ⊑ P′
true
julia> domain(P)
2.5 .. 9.0
julia> domain(P′)
2.5 .. 9.0
BasicBSpline.expandspace_R
— FunctionExpand B-spline space with given additional degree and knotvector. This function is compatible with issubset
(⊆
).
Examples
julia> k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]);
julia> P = BSplineSpace{2}(k);
julia> P′ = expandspace_R(P, Val(1), KnotVector([6.0]))
BSplineSpace{3, Float64, KnotVector{Float64}}(KnotVector([0.0, 0.0, 1.5, 1.5, 2.5, 2.5, 5.5, 5.5, 6.0, 8.0, 8.0, 9.0, 9.0, 9.5, 9.5, 10.0, 10.0]))
julia> P ⊆ P′
true
julia> P ⊑ P′
false
julia> domain(P)
2.5 .. 9.0
julia> domain(P′)
1.5 .. 9.5
BasicBSpline.intervalindex
— MethodReturn an index of a interval in the domain of B-spline space
Examples
julia> k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0]);
julia> P = BSplineSpace{2}(k);
julia> domain(P)
2.5 .. 9.0
julia> intervalindex(P,2.6)
1
julia> intervalindex(P,5.6)
2
julia> intervalindex(P,8.5)
3
julia> intervalindex(P,9.5)
3
BasicBSpline.isdegenerate
— MethodCheck if given B-spline space is degenerate.
Examples
julia> isdegenerate(BSplineSpace{2}(KnotVector([1,3,5,6,8,9])))
false
julia> isdegenerate(BSplineSpace{1}(KnotVector([1,3,3,3,8,9])))
true
BasicBSpline.isnondegenerate
— MethodCheck if given B-spline space is non-degenerate.
Examples
julia> isnondegenerate(BSplineSpace{2}(KnotVector([1,3,5,6,8,9])))
true
julia> isnondegenerate(BSplineSpace{1}(KnotVector([1,3,3,3,8,9])))
false
BasicBSpline.issqsubset
— MethodCheck inclusive relationship between B-spline spaces.
\[\mathcal{P}[p,k] \sqsubseteq\mathcal{P}[p',k'] \Leftrightarrow \mathcal{P}[p,k]|_{[k_{p+1},k_{l-p}]} \subseteq\mathcal{P}[p',k']|_{[k'_{p'+1},k'_{l'-p'}]}\]
BasicBSpline.r_nomial
— MethodCalculate $r$-nomial coefficient
r_nomial(n, k, r)
This function is considered as internal.
\[(1+x+\cdots+x^r)^n = \sum_{k} a_{n,k,r} x^k\]
BasicBSpline.refinement
— FunctionRefinement of B-spline manifold with given B-spline spaces.
BasicBSpline.refinement
— MethodRefinement of B-spline manifold with additional degree and knotvector.
BasicBSpline.refinement_I
— MethodRefinement of B-spline manifold with additional degree and knotvector.
BasicBSpline.refinement_R
— MethodRefinement of B-spline manifold with additional degree and knotvector.
BasicBSpline.unbounded_mapping
— Functionunbounded_mapping(M::BSplineManifold{Dim}, t::Vararg{Real,Dim})
Examples
julia> P = BSplineSpace{1}(KnotVector([0,0,1,1]))
BSplineSpace{1, Int64, KnotVector{Int64}}(KnotVector([0, 0, 1, 1]))
julia> domain(P)
0 .. 1
julia> M = BSplineManifold([0,1], P);
julia> unbounded_mapping(M, 0.1)
0.1
julia> M(0.1)
0.1
julia> unbounded_mapping(M, 1.2)
1.2
julia> M(1.2)
ERROR: DomainError with 1.2:
The input 1.2 is out of domain 0 .. 1.
[...]
BasicBSpline.@knotvector_str
— Macro@knotvector_str -> KnotVector
Construct a knotvector by specifying the numbers of duplicates of knots.
Examples
julia> knotvector"11111"
KnotVector([1, 2, 3, 4, 5])
julia> knotvector"123"
KnotVector([1, 2, 2, 3, 3, 3])
julia> knotvector" 2 2 2"
KnotVector([2, 2, 4, 4, 6, 6])
julia> knotvector" 1"
KnotVector([6])
BasicBSplineFitting.jl
BasicBSplineFitting.fittingcontrolpoints
— MethodFitting controlpoints with least squares method.
fittingcontrolpoints(func, Ps::Tuple)
This function will calculate $\bm{a}_i$ to minimize the following integral.
\[\int_I \left\|f(t)-\sum_i B_{(i,p,k)}(t) \bm{a}_i\right\|^2 dt\]
Similarly, for the two-dimensional case, minimize the following integral.
\[\int_{I^1 \times I^2} \left\|f(t^1, t^2)-\sum_{i,j} B_{(i,p^1,k^1)}(t^1)B_{(j,p^2,k^2)}(t^2) \bm{a}_{ij}\right\|^2 dt^1dt^2\]
Currently, this function supports up to three dimensions.
Examples
julia> f(t) = SVector(cos(t),sin(t),t);
julia> P = BSplineSpace{3}(KnotVector(range(0,2π,30)) + 3*KnotVector([0,2π]));
julia> a = fittingcontrolpoints(f, P);
julia> M = BSplineManifold(a, P);
julia> norm(M(1) - f(1)) < 1e-5
true
BasicBSplineFitting.innerproduct_I
— MethodCalculate a matrix
\[A_{ij}=\int_{I} B_{(i,p,k)}(t) B_{(j,p,k)}(t) dt\]
BasicBSplineFitting.innerproduct_R
— MethodCalculate a matrix
\[A_{ij}=\int_{\mathbb{R}} B_{(i,p,k)}(t) B_{(j,p,k)}(t) dt\]