# Plots.jl

`BasicBSpline.jl`

has a dependency on `RecipesBase.jl`

. This means, users can easily visalize instances defined in `BasicBSpline`

. In this section, we will provide some plottig examples.

`BSplineSpace`

```
k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])
P0 = BSplineSpace{0}(k) # 0th degree piecewise polynomial space
P1 = BSplineSpace{1}(k) # 1st degree piecewise polynomial space
P2 = BSplineSpace{2}(k) # 2nd degree piecewise polynomial space
P3 = BSplineSpace{3}(k) # 3rd degree piecewise polynomial space
plot(
plot([t->bsplinebasis(P0,i,t) for i in 1:dim(P0)], 0, 10, ylims=(0,1), legend=false, title="0th polynomial degree"),
plot([t->bsplinebasis(P1,i,t) for i in 1:dim(P1)], 0, 10, ylims=(0,1), legend=false, title="1st polynomial degree"),
plot([t->bsplinebasis(P2,i,t) for i in 1:dim(P2)], 0, 10, ylims=(0,1), legend=false, title="2nd polynomial degree"),
plot([t->bsplinebasis(P3,i,t) for i in 1:dim(P3)], 0, 10, ylims=(0,1), legend=false, title="3rd polynomial degree"),
)
```

```
k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])
P0 = BSplineSpace{0}(k) # 0th degree piecewise polynomial space
P1 = BSplineSpace{1}(k) # 1st degree piecewise polynomial space
P2 = BSplineSpace{2}(k) # 2nd degree piecewise polynomial space
P3 = BSplineSpace{3}(k) # 3rd degree piecewise polynomial space
plot(
plot(P0, ylims=(0,1), legend=false, title="0th polynomial degree"),
plot(P1, ylims=(0,1), legend=false, title="1st polynomial degree"),
plot(P2, ylims=(0,1), legend=false, title="2nd polynomial degree"),
plot(P3, ylims=(0,1), legend=false, title="3rd polynomial degree"),
layout=(2,2),
)
```

`BSplineDerivativeSpace`

```
k = KnotVector([0.0, 1.5, 2.5, 5.5, 8.0, 9.0, 9.5, 10.0])
P = BSplineSpace{3}(k)
plot(
plot(BSplineDerivativeSpace{0}(P), label="0th derivative", color=:black),
plot(BSplineDerivativeSpace{1}(P), label="1st derivative", color=:red),
plot(BSplineDerivativeSpace{2}(P), label="2nd derivative", color=:green),
plot(BSplineDerivativeSpace{3}(P), label="3rd derivative", color=:blue),
)
```

`BSplineManifold`

### Cardioid (planar curve)

```
f(t) = SVector((1+cos(t))*cos(t),(1+cos(t))*sin(t))
p = 3
k = KnotVector(range(0,2π,15)) + p * KnotVector([0,2π]) + 2 * KnotVector([π])
P = BSplineSpace{p}(k)
a = fittingcontrolpoints(f, P)
M = BSplineManifold(a, P)
plot(M)
```

### Helix (spatial curve)

```
f(t) = SVector(cos(t),sin(t),t)
p = 3
k = KnotVector(range(0,6π,15)) + p * KnotVector([0,6π])
P = BSplineSpace{p}(k)
a = fittingcontrolpoints(f, P)
M = BSplineManifold(a, P)
plot(M)
```

### B-spline surface

```
p1 = 2
p2 = 3
k1 = KnotVector(1:10)
k2 = KnotVector(1:20)
P1 = BSplineSpace{p1}(k1)
P2 = BSplineSpace{p2}(k2)
a = [SVector(i-j^2/20, j+i^2/10, sin((i+j)/2)+randn()) for i in 1:dim(P1), j in 1:dim(P2)]
M = BSplineManifold(a,(P1,P2))
plot(M)
```

`RationalBSplineManifold`

```
k = KnotVector([0,0,0,1,1,1])
P = BSplineSpace{2}(k)
a = [SVector(1,0),SVector(1,1),SVector(0,1)]
w = [1,1/√2,1]
M = BSplineManifold(a,P)
R = RationalBSplineManifold(a,w,P)
ts = 0:0.01:2
plot(cospi.(ts),sinpi.(ts), label="circle")
plot!(M, label="B-spline curve")
plot!(R, label="Rational B-spline curve")
```