Examples
Basic function definitions
using Desmos, Colors
state = @desmos begin
@text "Trigonometric functions"
@expression cos(x) color = $(RGB(1,0,0))
@expression sin(x) color = $RGB(0,0,1)
tan(x)
@expression cot(x) hidden = true
@expression (cosh(t), sinh(t)) parametric_domain = -2..3
end
Variable definitions
using Desmos
b = 3
state = @desmos begin
a = 4
@expression b = 5 slider = 2..6
@expression c = 5 slider = 1:8
@expression d = 7
$(2+2)
sin($(2b)*a-cx)
end
Newton's method
This example may not work correctly in Firefox. Please try running code with julia-vscode or desmos-text-io if you encounter any problems.
using Desmos
image_url = "https://raw.githubusercontent.com/hyrodium/Visualize2dimNewtonMethod/b3fcb1f935439d671e3ddb3eb3b19fd261f6b067/example1a.png"
state = @desmos begin
f(x,y) = x^2+y^2-3.9-x/2
g(x,y) = x^2-y^2-2
@expression 0 = f(x,y) color = Gray(0.3)
@expression 0 = g(x,y) color = Gray(0.6)
f_x(x,y) = (d/dx)(f(x,y))
f_y(x,y) = (d/dy)(f(x,y))
g_x(x,y) = (d/dx)(g(x,y))
g_y(x,y) = (d/dy)(g(x,y))
d(x,y) = f_x(x,y)*g_y(x,y)-f_y(x,y)*g_x(x,y)
A(x,y) = x-(g_y(x,y)*f(x,y)-f_y(x,y)*g(x,y))/d(x,y)
B(x,y) = y-(-g_x(x,y)*f(x,y)+f_x(x,y)*g(x,y))/d(x,y)
a₀ = 1
b₀ = 1
a(0) = a₀
b(0) = b₀
a(i) = A(a(i-1),b(i-1))
b(i) = B(a(i-1),b(i-1))
@expression L"I = [0,...,10]"
(a₀,b₀)
@expression (a(I),b(I)) lines = true
@image image_url = $image_url width = 20 height = 20 name = "regions"
end